Closing Tue:
TN 1, 2
Closing Next Thu: TN 3
Final: Sat, June 3 ${ }^{\text {rd }}$, 5:00-7:50pm, KANE 130

TN 2 \& 3: Higher order approx.

Recall:
$1^{\text {st }}$ Taylor polynomial and error bound

$$
T_{1}(x)=f(b)+f^{\prime}(b)(x-b)
$$

On an interval $[\mathrm{a}, \mathrm{b}]$, if $\left|f^{\prime \prime}(x)\right| \leq M$, then $\left|f(x)-T_{1}(x)\right| \leq \frac{M}{2}|x-b|^{2}$.

From last time:
Consider $f(x)=\ln (x)$ at $b=1$.
For the interval $J=[0.5,1.5]$, we found

$$
\text { step 1: }\left|f^{\prime \prime}(x)\right|=\left|-\frac{1}{x^{2}}\right| \leq 4=M
$$

step 2:

$$
\begin{aligned}
\left|f(x)-T_{1}(x)\right| & \leq \frac{4}{2}|x-1|^{2} \\
& \leq 2|1.5-1|^{2}=0.5
\end{aligned}
$$

Entry Task: For the same function...

1. For any number a (with $0<a<1$), give a formula for the error bound on the interval $[1-a, 1+a]$.
2. For what value of a is the error less than 0.01?

Example (you do):
Let $f(x)=x^{1 / 3}$ and $b=8$.
Find the $1^{\text {st }}$ Taylor Polynomial.
Use Taylor's inequality to give a
bound on the error over the interval $\mathrm{J}=[7,9]$.

(TN 2/ 3): Higher Order Approx.

The $\mathbf{2}^{\text {nd }}$ Taylor Polynomial (or quadratic approximation) is given by

Example:
Find the $2^{\text {nd }}$ Taylor polynomial for $f(x)=x^{1 / 3}$ based at $b=8$ and find the error bound on the interval $J=[7,9]$.
$T_{2}(x)=f(b)+f^{\prime}(b)(x-b)+\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2}$

The quadratic error bound theorem
(Taylor's inequality) states:
on a given interval [a,b],
if $\left|f^{\prime \prime \prime}(x)\right| \leq M$, then

$$
\left|f(x)-T_{2}(x)\right| \leq \frac{M}{6}|x-b|^{3}
$$

Taylor Approximation Idea:
If two functions have all the same derivative values, then they are the same function (up to a constant).

To explain, let's compare derivatives of $f(x)$ and $T_{2}(x)$ at b.

$$
\begin{aligned}
T_{2}(x)= & f(b)+f^{\prime}(b)(x-b)+\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2} \\
T_{2}^{\prime}(x)= & f^{\prime}(b)+\frac{1}{2} f^{\prime \prime}(b) 2(x-b) \\
& =f^{\prime}(b)+f^{\prime \prime}(b)(x-b)
\end{aligned}
$$

$$
T_{2}^{\prime \prime}(x)=f^{\prime \prime}(b)
$$

$$
T_{2}^{\prime \prime \prime}(x)=0
$$

Questions:
Why did we need a $1 / 2$?

What would $T_{3}(x)$ look like?
$f(b)+f^{\prime}(b)(x-b)+\frac{1}{2} f^{\prime \prime}(b)(x-b)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(b)(x-b)^{3}+\cdots+\frac{1}{n!} f^{(n)}(b)(x-b)^{n}$
In sigma notation:

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(b)(x-b)^{k}
$$

Taylor's Inequality (error bound): on a given interval $[\mathrm{a}, \mathrm{b}]$, if $\left|f^{(n+1)}(x)\right| \leq M$, then

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-b|^{n+1}
$$

Side Note:
For a fixed constant, a, the expression $\frac{a^{k}}{k!}$ goes to zero as k goes to infinity.

So the expression $\frac{1}{(n+1)!}|x-b|^{n+1}$, will always go to zero as n gets bigger.

Which means that the error goes to zero, unless something unusual is happening with M, which will see in examples later.

Example:

Find the $9^{\text {th }}$ Taylor polynomial for
$f(x)=e^{x}$ based at $b=0$, and give an error bound on the interval $[-2,2]$.
$f(x)=e^{x}$ as well as $T_{1}(x), T_{2}(x), T_{3}(x), T_{4}(x)$ and $T_{5}(x)$ are shown:

